265 Diego Pinheiro da Silva, Blanda Helena de Mello, Marta Rosecler Bez e Sandro José Rigo BADAR, M.; HARIS, M.; FATIMA, A. Application of deep learning for retinal image analysis: a review. Computer Science Review, v. 35, art. 100203, 2020. BECKER, M.; BÖCKMANN, B. Personalized guideline-based treatment recommendations using natural language processing techniques. In: CORNET, Ronald; MCCOWAN, Colin; PEEK, Niels (ed.). Informatics for health: connected citizen-led wellness and population health. Amsterdã: IOS Press, 2017. p. 271-275. BEG, S. et al. Wearable smart devices in cancer diagnosis and remote clinical trial monitoring: transforming the healthcare applications. Drug discovery today, Amsterdã, v. 27, n. 10, art. 103314, 2022. BENÍCIO, D. H. P. Aplicação de mineração de texto e processamento de linguagemnatural emprontuários eletrônicos de pacientes para extração e transformação de texto em dado estruturado. 2020. 68 f. Dissertação (Mestrado em Ciência da Computação) — Programa de Pós-graduação em Tecnologia da Informação, Universidade Federal do Rio Grande do Norte, Natal, 2020. BHASALE, A. The wrong diagnosis: identifying causes of potentially adverse events in general practice using incident monitoring. Family Practice, Oxford, UK, v. 15, n. 4, p. 308-318, 1998. BRAGA, A. V. et al. Machine learning: o uso da inteligência artificial na medicina. Brazilian Journal of Development, v. 5, n. 9, p. 16407-16413, 2019. CAMMAROTA, G. et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nature reviews gastroenterology & hepatology, Londres, v. 17, n. 10, p. 635-648, 2020. CHOI, E. et al. Retain: an interpretable predictive model for healthcare using reverse time attentionmechanism. arXiv preprint arXiv:1608.05745, Ithaca, NY, EUA, 2016. Disponível em: https://arxiv.org/abs/1608.05745. Acesso em: 3 nov. 2025.
RkJQdWJsaXNoZXIy MjEzNzYz